Contributions to Nonlinear Analysis - A Tribute to D.G. de Figueiredo on the Occasion of his 70th Birthday

Contributions to Nonlinear Analysis - A Tribute to D.G. de Figueiredo on the Occasion of his 70th Birthday

von: Thierry Cazenave, David Costa, Orlando Lopes, Raúl Manásevich, Paul Rabinowitz, Bernhard Ruf, Carlos

Birkhäuser Basel, 2007

ISBN: 9783764374013 , 520 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 178,49 EUR

  • Geometric Group Theory - Geneva and Barcelona Conferences
    All of Nonparametric Statistics
    Multiscale Modeling - A Bayesian Perspective
    Logica Universalis - Towards a General Theory of Logic
    Expounding the Mathematical Seed. Vol. 2: The Supplements - A Translation of Bh?skara I on the Mathematical Chapter of the ?ryabhat?ya
    An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem
  • High Performance Computing on Vector Systems 2007
    Standard Monomial Theory - Invariant Theoretic Approach
    Mathematical Survey Lectures 1943-2004
    Stochastic Global Optimization
    Algebraic Theory of Locally Nilpotent Derivations
    Stochastic Control in Insurance
 

Mehr zum Inhalt

Contributions to Nonlinear Analysis - A Tribute to D.G. de Figueiredo on the Occasion of his 70th Birthday


 

This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping ? ? u ?? u =|u| u in ? ×(0,+?) ? tt ? ? ? ? u=0 on ? ×(0,+?) 0 (1. 1) ? ? u+g(u)=0 on ? ×(0,+?) ? t 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x),x? ? , t n where ? is a bounded domain of R ,n? 1, with a smooth boundary ? = ? ?? . 0 1 Here, ? and ? are closed and disjoint and ? represents the unit outward normal 0 1 to ?. Problems like (1. 1), more precisely, ? u ?? u =?f (u)in? ×(0,+?) ? tt 0 ? ? ? ? u=0 on ? ×(0,+?) 0 (1. 2) ? ? u =?g(u )?f (u)on? ×(0,+?) ? t 1 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x),x? ? , t were widely studied in the literature, mainly when f =0,see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s),i=0,1, but assuming that f (s)s? 0, that is, f represents, for i i i each i, an attractive force.