Molecular Building Blocks for Nanotechnology - From Diamondoids to Nanoscale Materials and Applications

von: G.Ali Mansoori, Thomas F. George, Lahsen Assoufid, Guoping Zhang

Springer-Verlag, 2007

ISBN: 9780387399386 , 426 Seiten

Format: PDF

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX Apple iPad, Android Tablet PC's

Preis: 213,99 EUR

  • High Resolution Numerical Modelling of the Atmosphere and Ocean
    Digital Terrain Modelling - Development and Applications in a Policy Support Environment
    Spatial Data Modelling for 3D GIS
    MATLABĀ® Recipes for Earth Sciences
    Legitimacy in European Nature Conservation Policy - Case Studies in Multilevel Governance
    The Fernow Watershed Acidification Study
  • Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part I
    GIS for Health and the Environment - Development in the Asia-Pacific Region
    Globalisation and Sustainable Development - Environmental Agendas
    Post-Agricultural Succession in the Neotropics
    Carbon Inventory Methods - Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects
    Employment Deconcentration in European Metropolitan Areas - Market Forces versus Planning Regulations
 

Mehr zum Inhalt

Molecular Building Blocks for Nanotechnology - From Diamondoids to Nanoscale Materials and Applications


 

Preface

6

Contents

7

List of Contributors

9

Introduction

13

References

18

Thermodynamic Properties of Diamondoids

19

1.1. Introduction

19

1.2. Pure Component Thermodynamic Properties

19

1.3. Solubilities of Diamondoids and Phase Behavior of the Binary Systems

24

1.3.1. Solubilities of Diamondoids in Supercritical Solvents

24

1.3.2. Solubilities of Adamantane in Near and Supercritical Fluids by Using a New Equation of State

28

1.3.3. Solubilities of Diamondoids in Liquid Organic Solvents

32

1.3.4. High-Pressure Phase Behavior of the Binary Systems

32

References

38

Development of Composite Materials Based on Improved Nanodiamonds

41

2.1. Introduction

41

2.2. Description of the Existing and Improved Techniques of Diamond Nanopowder Synthesis

41

2.2.1. Properties of Nanodiamonds Demonstrating Their Diamondlike Structure

45

2.2.2. Dispersity

46

2.2.3. Density

46

2.2.4. Chemical Composition

46

2.3. Fields of Application of Nanodiamond Powders

47

2.4. Conclusion

55

References

55

Diamondoids as Molecular Building Blocks for Nanotechnology

56

3.1. Introduction

56

3.2. Molecular Building Blocks (MBBs) in Nanotechnology

56

3.2.1. Diamondoid Molecules

58

3.2.2. Synthesis of Diamondoids

62

3.3. General Applications of Diamondoids

63

3.3.1. Application of Diamondoids as MBBs

64

3.3.2. Diamondoids for Drug Delivery and Drug Targeting

67

3.4. DNA-Directed Assembly and DNA- Adamantane- Amino acid Nanostructures

69

3.5. Diamondoids for Host-Guest Chemistry

72

3.6. Discussion and Conclusions

77

References

79

Surface Modification and Application of Functionalized Polymer Nanofibers

84

4.1. Attractiveness of Nanofibers

84

4.1.1. Affinity Membranes

84

4.1.2. Tissue Engineering Scaffolds

85

4.1.3. Sensors

85

4.1.4. Protective Clothing

85

4.2. Polymer Surface Modification

86

4.3. Blending and Coating

88

4.3.1. Application

88

4.4. Chemical Methods

90

4.4.1. Applications

90

4.5. Graft Polymerization

91

4.5.1. Radiation-Induced Graft Co-Polymerization

91

4.5.2. Plasma-Induced Graft Co-Polymerization

96

4.6. Advantages and Disadvantageous

99

4.7. Summary

100

References

101

Zinc Oxide Nanorod Arrays: Properties and Hydrothermal Synthesis

104

5.1. Introduction

104

5.1.1. Properties of ZnO Nanorods

104

5.2. Synthesis Methods for ZnO Nanorod Arrays

106

5.2.1. Chemical Vapor Deposition Methods

106

5.2.2. Solution Phase Methods Based on Hydrothermal Synthesis

106

5.2.3. Self-Assembly of Aligned ZnO Nanorods on Any Substrates via a Mineral Interface

109

5.2.4. Field Emission

114

5.2.5. Selected Area Assembly

116

5.2.6. Oriented Assembly of ZnO on Curved Surfaces

117

5.3. Characterization of ZnO Nanorods

120

5.3.1. Morphology of ZnO Nanorods

120

5.3.2. Crystalline Property of ZnO Nanorods

121

5.3.3. Optical Properties of ZnO Nanorods

121

5.3.4. Growth Mechanism of ZnO Nanorods

123

5.3.5. Effect of ZnO Nanorod Morphology on Growth Temperature: From Nanoneedles to Nanorods

124

5.4. Conclusion

126

References

127

Nanoparticles, Nanorods, and Other Nanostructures Assembled on Inert Substrates

130

6.1. Introduction

130

6.2. Geometry and Surface Structures of Supported Nanostructures

130

6.3. Experimental Procedure and Considerations

133

6.4. Nanostructures Assembled on Graphite

136

6.4.1. Antimony on Graphite

136

6.4.2. Aluminum on Graphite

144

6.4.3. Germanium on Graphite

148

6.5. Silicon and Germanium on Silicon Nitride

151

6.6. From Clusters and Nanocrystallites to Continuous Film

153

6.7. Conclusions and Future Outlook

157

References

158

Thermal Properties of Carbon Nanotubes

166

7.1. Introduction

166

7.2. Background

167

7.2.1. Physical Structure

167

7.2.2. Electrical Properties

169

7.3. Thermal Conductivity

171

7.3.1. Theory

171

7.3.2. Measurements

175

7.4. Thermal Conductivity Simulations

180

7.4.1. Molecular Dynamic Approach

180

7.4.2. Single-Wall Nanotubes

185

7.4.3. Y-Junction Nanotubes

186

7.4.4. CNT-Polymer Composites

188

7.5. Heat Pulse Propagation in SWNT

190

References

197

Chemical Vapor Deposition of Organized Architectures of Carbon Nanotubes for Applications

200

8.1. Introduction

200

8.2. CVD: The Process and the Structures Grown via CVD

201

8.2.1. History and State of the Art of CVD of Carbon Nanotubes

201

8.2.2. Floating Catalyst Method for Selective Growth of Carbon Nanotube Layers Using Ferrocene as a Catalyst

203

8.3. Carbon Nanotube Structures Grown by Chemical Vapor Deposition

204

8.4. Directed Growth of Carbon Nanotubes by Floating Catalyst Method on 3- D Substrates

206

8.5. Freestanding Macroscopic Tubes Made of Carbon Nanotubes

207

8.5.1. Microbrushes Made from Carbon Nanotubes

209

8.5.2. Controlled Fabrication of Hierarchically Branched Carbon Nanotubes in Pores of Porous Alumina

210

8.6. Applications of the Structures

211

8.6.1. Electron Field Emission Sources

212

8.6.2. Ionization Sensors

213

8.6.3. Membrane Filters

213

8.6.4. Nanocomposites

215

8.7. Future Perspectives, Challenges, and Possible Solutions

218

References

220

Online Size Characterization of Nanofibers and Nanotubes

224

9.1. Introduction

224

9.2. Size Classification of Nanofibers

225

9.2.1. Diameter Classification

225

9.2.2. Length Classification

227

9.3. Online Size Characterization of Carbon Nanotubes

235

9.3.1. Background on Carbon Nanotubes

235

9.3.2. Theory of Electrical Mobility

237

9.3.3. Semi-Empirical Estimate of Nanotube Charging

239

9.3.4. Experimental

240

9.3.5. Results

240

9.4. Size Characterization of Nanofibers and Nanotubes by Microscopy

247

9.4.1. Microscopy Specimen Prep and Sampling

247

9.4.2. Obtaining and Interpreting Information from the Sample

249

9.5. Conclusions

251

Nomenclature

251

Greek Letters

252

References

253

Theoretical Investigations in Retinal and Cubane

258

10.1. Introduction

258

10.2. Semiclassical and Empirical Method

259

10.3. First-Principles Calculations

260

10.3.1. Segment of Retinal Molecule

260

10.3.2. Cubane

263

References

266

Polyhedral Heteroborane Clusters for Nanotechnology

268

11.1. Introduction

268

11.2. Structural and Electronic Properties

269

11.2.1. Borane Clusters

269

11.2.2. Carborane Clusters

271

11.2.3. Metallacarborane Clusters

272

11.3. Applications

275

11.3.1. Nanoparticles

275

11.3.2. Nanomedicine

276

11.3.3. Molecular Machines

277

11.3.4. Nanoelectronics

278

11.3.5. Nanostructured Materials

280

11.4. Computational Design of Materials

283

11.5. Summary

284

References

284

Squeezing Germanium Nanostructures

287

12.1. Introduction

287

12.2. Experimental Techniques

288

12.3. Germanium Quantum Dots

289

12.3.1. Raman Peak Assignments

290

12.3.2. High-Pressure Raman Studies

291

12.3.3. Resonance Raman Scattering via High Pressure

296

12.4. Germanium Nanocrystals

297

12.4.1. Ge/ SiO2/ Quartz Nanosystem

298

12.4.2. Ge/ SiO2/ Si Nanosystem

301

12.5. Conclusion

309

References

310

Nanoengineered Biomimetic Bone- Building Blocks

313

13.1. Introduction

313

13.2. Nanostructural Strategy of Bone

314

13.2.1. Nanoscale Bone-Building Blocks

314

13.2.2. Cellular Functions of Bone Tissue

315

13.2.3. Hierarchical Tactics of Bone

316

13.2.4. Mechanism of Biological Mineralization

318

13.3. Current Scenario of Bone Grafting

320

13.4. Key Factors of an Ideal Bone Graft

323

13.4.1. Osteoconductive Bone Grafts

323

13.4.2. Osteoinductive Bone Grafts

334

13.4.3. Osteogenic Bone Grafts

335

13.5. Biomimetic Nanocomposites-A New Approach

336

13.6. Biomimetic Bone Grafts-Designs from Nature's Lessons

340

13.6.1. Rationale and Benefits of Biomimetics

340

13.6.2. Design Strategy of Biomimetic Nanocomposite Bone Grafts

342

13.7. Bone Tissue Engineering

347

13.8. Challenges and Future Directions

350

13.9. Conclusions

351

Acronyms

352

Glossry

352

References

357

Use of Nanoparticles as Building Blocks for Bioapplications

365

14.1. Introduction

365

14.2. Synthesis and Surface Modification of Nanoparticles

365

14.2.1. Synthesis of Nanoparticles

366

14.2.2. Surface Modification of Nanoparticles

367

14.3. Conjugation of Biomolecules to Nanoparticles

369

14.3.1. Attachment of Biomolecules to Nanoparticles

370

14.3.2. Biofunctionality of Biomolecules on Nanoparticles

371

14.4. Nanoparticles as Building Blocks for Bioapplications

373

14.4.1. Self-Assembly of Nanoparticles Using Biomolecules as Templates

373

14.4.2. Self-Assembly of Nanoparticles on Solid Substrates

376

14.4.3. Preparation of Hollow Spheres and Porous Materials Using Nanoparticles as Templates

378

References

380

Polymer Nanofibers for Biosensor Applications

389

15.1. Biosensors: Definition

389

15.2. Classification and Types

389

15.2.1. Electrochemical Sensors

389

15.2.2. Optical Sensors

391

15.2.3. Acoustic Sensors

391

15.2.4. Immunosensors

392

15.3. Limitations of Biosensors

393

15.4. Significance of Nanofibers for Biosensor Applications

393

15.5. Biosensors from Polymer Nanofibers-Review

394

15.5.1. Fabrication of Biosensors Using Polymer Nanofibers

395

15.5.2. Glucose Sensor

396

15.6. Application

401

15.6.1. Biomedical Application

401

15.6.2. Environmental Monitoring

401

15.6.3. Multicomponent Analyzers

402

15.7. Conclusion

402

References

402

High-Pressure Synthesis of Carbon Nanostructured Superhard Materials

405

16.1. Introduction

405

16.2. Synthesis of Superhard Materials

406

16.3. Structure of Superhard Materials

407

16.4. Hardness

419

16.5. Elastic Properties of C60- Based Polymerized Fullerites

424

16.6. Electrical Conductivity of 3-D-Polymerized Fullerites C60 Obtained by HPHT Treatment

426

16.7. Conclusion

429

References

430

Index

431