Lectures on Algebraic Geometry II - Basic Concepts, Coherent Cohomology, Curves and their Jacobians

von: Günter Harder, Klas Diederich

Vieweg+Teubner (GWV), 2011

ISBN: 9783834881595 , 365 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 96,29 EUR

  • Life Distributions - Structure of Nonparametric, Semiparametric, and Parametric Families
    Resource Allocation in Multiuser Multicarrier Wireless Systems
    Analysis of Toeplitz Operators
    The Breadth of Symplectic and Poisson Geometry - Festschrift in Honor of Alan Weinstein
    Full-Chip Nanometer Routing Techniques
    Silicon-Based RF Front-Ends for Ultra Wideband Radios
  • Turbo-like Codes - Design for High Speed Decoding
    POF-Handbuch - Optische Kurzstrecken-Übertragungssysteme
    Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. / Scientific Correspondence with Bohr, Einstein, Heisenberg a.o. - Band/Volume IV Teil/Part IV: 1957-1958
    Numerical Mathematics and Advanced Applications - Proceedings of ENUMATH 2005 the 6th European Conference on Numerical Mathematics and Advanced Applications, Santiago de Compostela, Spain, July 2005
    Frontiers in Number Theory, Physics, and Geometry II - On Conformal Field Theories, Discrete Groups and Renormalization






Mehr zum Inhalt

Lectures on Algebraic Geometry II - Basic Concepts, Coherent Cohomology, Curves and their Jacobians


This second volume introduces the concept of shemes, reviews some commutative algebra and introduces projective schemes. The finiteness theorem for coherent sheaves is proved, here again the techniques of homological algebra and sheaf cohomology are needed. In the last two chapters, projective curves over an arbitrary ground field are discussed, the theory of Jacobians is developed, and the existence of the Picard scheme is proved.
Finally, the author gives some outlook into further developments- for instance étale cohomology- and states some fundamental theorems.

Prof. Dr. Günter Harder, Max-Planck-Institute for Mathematics, Bonn