Emulsion Science - Basic Principles

Emulsion Science - Basic Principles

von: Fernando Leal-Calderon, Véronique Schmitt, Jerôme Bibette

Springer-Verlag, 2007

ISBN: 9780387396835 , 225 Seiten

2. Auflage

Format: PDF

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX Apple iPad, Android Tablet PC's

Preis: 142,79 EUR

  • NMR-MRI, µSR and Mössbauer Spectroscopies in Molecular Magnets
    A History of Thermodynamics - The Doctrine of Energy and Entropy
    Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration
    Tensors - The Mathematics of Relativity Theory and Continuum Mechanics
    Next Generation Intelligent Optical Networks - From Access to Backbone
    Econophysics of Markets and Business Networks
  • Progress in Ultrafast Intense Laser Science I
    Physics of Classical Electromagnetism
    Advances in Solid State Physics 46
    Creating Assertion-Based IP
    Multiple Stars across the H-R Diagram - Proceedings of the ESO Workshop held in Garching, Germany, 12-15 July 2005
    Non-Linear Dynamics Near and Far from Equilibrium
 

Mehr zum Inhalt

Emulsion Science - Basic Principles


 

Contents

5

Preface

8

Emulsions and Common Sense

8

Acknowledgments

9

Introduction

10

References

13

Emulsification

14

1.1. Introduction

14

1.2. High-Pressure Homogenization

14

1.3. Membrane Emulsification

15

1.4. Microchannel Emulsification

16

1.5. Spontaneous Emulsification

19

1.6. Phase Inversion

20

1.6.1. PIT Method

20

1.6.2. Generalization

23

1.6.3. Examples

25

1.7. Application of a Controlled Shear

27

1.7.1. Emulsion Preparation and Characterization

29

1.7.2. Fragmentation Kinetics of Model Emulsions

30

1.7.3. Breaking Mechanisms

30

1.7.4. Generalization

34

1.7.5. Parameters Governing the Rayleigh Instability

35

1.7.6. Examples of Monodisperse Materials

41

1.8. Conclusion

49

References

51

Force Measurements

61

2.1. Introduction

61

2.2. Long-Range Forces

61

2.2.1. Techniques for Surface Force Measurements

62

2.2.2. Recent Advances

66

2.3. Short-Range Forces and Adhesion Between Emulsion Droplets

98

2.3.1. Energy of Adhesion and Contact Angles

98

2.3.2. Experimental Measurements of the Adhesive Energy

102

2.4. Conclusion

106

References

107

Phase Transitions

114

3.1. Introduction

114

3.2. Weak Attractive Interactions and Equilibrium Phase Transitions

114

3.2.1. Experimental Observations

114

3.2.2. Models for Phase Transitions

127

3.3. Gelation and Kinetically Induced Ordering

129

3.4. Conclusion

132

References

133

Compressibility and Elasticity of Concentrated Emulsions

135

4.1. Introduction

135

4.2. Basic Concepts

136

4.3. Experimental Techniques

137

4.3.1. Elasticity Measurements

137

4.3.2. Compressibility Measurements

137

4.4. Compressibility and Elasticity of Surfactant- Stabilized Emulsions

138

4.4.1. Experimental Results

138

4.4.2. Theoretical Approaches

141

4.5. Compressibility and Elasticity of Solid- Stabilized Emulsions

144

4.5.1. Osmotic Stress Resistance Measurements

145

4.5.2. Surface Properties: Elasticity and Plasticity

146

4.6. Conclusion

149

References

150

Stability of Concentrated Emulsions

152

5.1. Introduction

152

5.2. Ostwald Ripening

153

5.3. Coalescence

155

5.3.1. General Phenomenology and Microscopic Description

155

5.4. Measurements of the Coalescence Frequency

159

5.4.1. Simple Emulsions Stabilized by Surfactants

160

5.4.2. Double Emulsions Stabilized by Surfactants

166

5.4.3. Simple Emulsions Stabilized by Solid Particles

168

5.5. Gelation and Homothetic Contraction

172

5.6. Partial Coalescence in Emulsions Comprising Partially Crystallized Droplets

176

5.7. Conclusion

177

References

178

Double Emulsions

182

6.1. Introduction

182

6.2. W/O/W Surfactant-Stabilized Emulsions

183

6.2.1. Emulsion Preparation

183

6.2.2. General Phenomenology

185

6.2.3. Role of the Hydrophilic Surfactant in Inducing Coalescence

187

6.2.4. Kinetics of Release

191

6.2.5. Water Transport Under Osmotic Pressure Mismatch

196

6.3. W/O/W Polymer-Stabilized Emulsions

197

6.3.1. Phenomenological Model for Compositional Ripening

200

6.3.2. Microscopic Approaches of the Permeability: State of the Art

201

6.3.3. Influence of Temperature on Compositional Ripening

202

6.4. Solid-Stabilized Double Emulsions

203

6.5. Conclusion

205

References

205

New Challenges for Emulsions: Biosensors, Nano- reactors, and Templates

209

7.1. Introduction

209

7.2. Emulsions as Biosensors

209

7.2.1. Emulsions for Homogeneous Assays

210

7.2.2. Emulsions for Single Immunocomplex Micromechanics

215

7.3. Emulsions as Nano-reactors

219

7.3.1. Screening of Large Libraries and Directed Enzyme Evolution

220

7.4. Emulsions as Microtemplates

223

7.4.1. Colloidal Clusters and Micro-optics

223

References

227

General Conclusion

232

Index

234